SciELO - Scientific Electronic Library Online

 
vol.9 número3 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Brazilian Journal of Oral Sciences

versão On-line ISSN 1677-3225

Braz. J. Oral Sci. vol.9 no.3 Piracicaba Jul./Set. 2010

 

ORIGINAL ARTICLE

 

Porcelain application and simulation of firing cycle: effect on marginal misfit of implant-supported frameworks

 

 

Márcia Mika NakaokaI; Jessica Mie Ferreira Koyama TakahashiII; Juliana Maria Costa Nuñez-PantojaII; Rafael Leonardo Xediek ConsaniIII; Marcelo Ferraz MesquitaIII

IDDS, MS, PhD, Dentistry School, São Lucas College, Porto Velho, RO, Brazil
IIDDS, MS, Department of Prosthodontics and Periodontology Piracicaba Dental School State University of Campinas, Piracicaba, SP, Brazil
IIIDDS, MS, PhD, Department of Prosthodontics and Periodontology Piracicaba Dental School State University of Campinas, Piracicaba, SP, Brazil

Correspondence to

 

 


ABSTRACT

AIM: Success of implant-supported prostheses is related to the frameworks' passive fit, hence inaccuracies can generate stress, leading to bone resorption and rehabilitation failure. This study evaluated misfit levels of implant-supported frameworks after different coverage treatments.
METHODS:
Twenty commercially pure titanium (CP Ti) frameworks were manufactured with 5 Branemark type multi-unit abutments. Frameworks were distributed in two groups as follows: G1 - porcelain application (n=10); G2 - porcelain firing cycle simulation (n=10). Using a traveling microscope, marginal misfit was measured before and after undertaking the techniques, following the single-screw test protocol. All data were submitted to ANOVA and Tukey's test (p<0.05).
RESULTS:
Initial marginal misfit values were not significantly different, but both groups presented significantly higher misfit values after treatment: G1: 233.99 µm (p=0.0003); G2: 119.75 µm (p<0.0001). In addition, G1 presented higher misfit than G2 (p<0.0001).
CONCLUSIONS:
Porcelain application promoted significantly higher increase of misfit, which indicates that such procedure should be considered on misfit analysis of implant-supported prostheses.

Keywords: implant-supported prosthesis, prosthesis fitting, esthetic coverage, titanium framework.


 

 

Full text available only in PDF format.

 

 

Acknowledgements

This research was supported by FAPESP (grant 2004/13629-5).

 

References

1. Aparicio C. A new method to routinely achieve passive fit of ceramometal prostheses over Branemark osseointegrated implants: a two-year report. Int J Periodontics Restorative Dent. 1994; 14: 404-19.         [ Links ]

2. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants. 1994; 9: 90-4.         [ Links ]

3. Jemt T. Fixed implant-supported prostheses in the edentulous maxilla. A five-year follow-up report. Clin Oral Implants Res. 1994; 5: 142-7.         [ Links ]

4. Jemt T, Book K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int J Oral Maxillofac Implants. 1996; 11: 620-5.         [ Links ]

5. Jemt T, Back T, Petersson A. Precision of CNC-milled titanium frameworks for implant treatment in the edentulous jaw. Int J Prosthodont. 1999; 12: 209-15.         [ Links ]

6. Jemt T, Bergendal B, Arvidson K, Bergendal T, Karlsson LD, Linden B et al. Implant-supported welded titanium frameworks in the edentulous maxilla: a 5-year prospective multicenter study. Int J Prosthodont. 2002; 15: 544-8.         [ Links ]

7. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977; 16: 1-132.         [ Links ]

8. Hulterstrom M, Nilsson U. Cobalt-chromium as a framework material in implant-supported fixed prostheses: a preliminary report. Int J Oral Maxillofac Implants. 1991; 6: 475-80.         [ Links ]

9. Zervas PJ, Papazoglou E, Beck FM, Carr AB. Distortion of three-unit implant frameworks during casting, soldering, and simulated porcelain firings. J Prosthodont. 1999; 8: 171-9.         [ Links ]

10. Parr GR, Gardner LK, Toth RW. Titanium: the mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent. 1985; 54: 410-4.         [ Links ]

11. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993; 43: 245-53.         [ Links ]

12. Kan JY, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent. 1999; 81: 7-13.         [ Links ]

13. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991; 6: 270-6.         [ Links ]

14. Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report. Int J Oral Maxillofac Implants. 1993; 8: 635-40.         [ Links ]

15. Sahin S, Cehreli MC. The significance of passive framework fit in implant prosthodontics: current status. Implant Dent. 2001; 10: 85-92.         [ Links ]

16. Jemt T. Three-dimensional distortion of gold alloy castings and welded titanium frameworks. Measurements of the precision of fit between completed implant prostheses and the master casts in routine edentulous situations. J Oral Rehabil. 1995; 22: 557-64.         [ Links ]

17. Romero GG, Engelmeier R, Powers JM, Canterbury AA. Accuracy of three corrective techniques for implant bar fabrication. J Prosthet Dent. 2000; 84: 602-7.         [ Links ]

18. Schiffleger BE, Ziebert GJ, Dhuru VB, Brantley WA, Sigaroudi K. Comparison of accuracy of multiunit one-piece castings. J Prosthet Dent. 1985; 54: 770-6.         [ Links ]

19. Schmitt SM, Chance DA, Cronin RJ. Refining cast implant-retained restorations by electrical discharge machining. J Prosthet Dent. 1995; 73: 280-3.         [ Links ]

20. Evans DB. Correcting the fit of implant-retained restorations by electric discharge machining. J Prosthet Dent. 1997; 77: 212-5.         [ Links ]

21. Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent. 1998; 80: 184-92.         [ Links ]

22. Bridger DV, Nicholls JI. Distortion of ceramometal fixed partial dentures during the firing cycle. J Prosthet Dent. 1981; 45: 507-14.         [ Links ]

23. Papazoglou E, Brantley WA, Johnston WM. Evaluation of high-temperature distortion of high-palladium metal-ceramic crowns. J Prosthet Dent. 2001; 85: 133-40.         [ Links ]

24. Faucher RR, Nicholls JI. Distortion related to margin design in porcelain-fused-to-metal restorations. J Prosthet Dent. 1980; 43: 149-55.         [ Links ]

25. Buchanan WT, Svare CW, Turner KA. The effect of repeated firings and strength on marginal distortion in two ceramometal systems. J Prosthet Dent. 1981; 45: 502-6.         [ Links ]

26. Monday JJ, Asgar K. Tensile strength comparison of presoldered and postsoldered joints. J Prosthet Dent. 1986; 55: 23-7.         [ Links ]

27. Fonseca JC, Henriques GE, Sobrinho LC, de Goes MF. Stress-relieving and porcelain firing cycle influence on marginal fit of commercially pure titanium and titanium-aluminum-vanadium copings. Dent Mater. 2003; 19: 686-91.         [ Links ]

 

 

Correspondence to:
Jessica Mie Ferreira Koyama Takahashi
Rua Luíz Razera 300 ap44DR
Nova América - 13417-530
Piracicaba, SãoPaulo - Brasil
e-mail: jemfkt@yahoo.com.br

Received for publication: April 14, 2010
Accepted: July 06, 2010